报告时间:2022年04月28日(星期四)15:00-16:00
报告地点:腾讯会议:603459195
报 告 人:李春霞 教授
工作单位:首都师范大学
举办单位:金沙威尼斯欢乐娱人城
报告简介:In this paper, we first propose a generalized bilinear Backlund transformation and thus a generalized Lax pair for the bilinear q-difference two-dimensional Toda lattice (q-2DTL) equation. Next, starting from the known Darboux transformation for the noncommutative q-2DTL equation, we construct the existing Casoratian solutions to the bilinear q-2DTL equation and its bilinear Backlund transformation obtained by Hirota's bilinear method. And then, we successfully construct the binary Darboux transformation for the q-2DTL equation, based on which, Grammian solutions expressed in terms of quantum integrals are established for both the bilinear q-2DTL equation and its bilinear Backlund transformation. This reveals the profound connections between Darboux transformation and Hirota's bilinear method. In the end, by considering the 2-periodic reductions on the corresponding results of the q-2DTL equation, a q-difference sine-Gordon equation, a modified q-sG equation and their solutions are reported for the first time.
报告人简介:
李春霞,首都师范大学数学科学学院教授,博士生导师,研究方向为孤子理论与可积系统。中国科学院博士,清华大学博士后,格拉斯哥大学博士后(英国皇家学会资助)。访问剑桥大学牛顿数学科学研究所、美国University of South Florida和College of Charleston。曾主持国家自然科学基金项目3项、北京市自然科学基金面上项目2项等。曾在Journal of Nonlinear Science, Proceedings of the Royal Society A, Journal of Physics A和Inverse Problems等刊物上发表论文。