报告人:Bernhard Keller教授
工作单位:法国巴黎西岱大学
举办单位:金沙威尼斯欢乐娱人城
报告简介:In a famous article in 2008, Fomin-Shapiro-Thurston associateda cluster algebra to each triangulated marked surface. In 2012, in his thesis under the supervision of Andrei Zelevinsky, Daniel Labardini-Fragoso constructednon degenerate quivers with potential which allow to categorify thesealgebras using Amiot's construction of the cluster category associatedwith a quiver with potential. A completely new approach to the constructionof these surface cluster categories was developed by Merlin Christ inhis thesis under the supervision of Tobias Dyckerhoff in 2022. Givena triangulation of a surface (without punctures), he obtains them by glueingcopies of the (relative) 2-Calabi-Yau category associated with a triangle. More intrinsically, he obtains the surface cluster category as the category of global sections of a perverse schober (in the sense of Kapranov-Schechtman) associatedto the surface. In this series of lectures, we will give an introductionto this circle of ideas starting from combinatorics and ending upwith higher category theory.
报告人简介:Bernhard Keller,巴黎西岱大学教授、中国科学技术大学客座教授、著名代数学家,在微分分次理论、丛理论以及Hochschild同调理论中均做出奠基性的学术成果。Keller教授是法国科学院“索菲·热尔曼”2014年度大奖得主、2024年“科学前沿奖”得主、法国大学研究院资深成员、挪威皇家科学通讯院士、比利时安特卫普大学荣誉博士、国际数学家大会ICM邀请报告人以及美国数学会会士。任国际知名杂志Advances in Mathematics,Forum of Mathematics Pi以及Journal of the European Mathematical Society编委。
报告一:Cluster categories for surfaces, after Merlin Christ I
报告时间:2024年7月23日(星期二)09:30-11:30
报告地点:翡翠科教楼B座1710
报告二:Cluster categories for surfaces, after Merlin Christ II
报告时间:2024年7月24日(星期三)09:30-11:30
报告地点:翡翠科教楼B座1710
报告三:Cluster categories for surfaces, after Merlin Christ III
报告时间:2024年7月25日(星期四)09:30-11:30
报告地点:翡翠科教楼B座1710